
FY2023石

石井 大輔 / Daisuke ISHII

情報科学系 / School of Information Science

次世代デジタル社会基盤研究領域 / Next-gen digital infrastructure area

dsksh@jaist.ac.jp, https://www.dsksh.com

Lab Introduction

https://www.dsksh.com

Overview of Ishii lab
•Work on both theoretical aspects and implementations/
experimentations on software

•Software engineering/science for cyber-physical
systems (CPS)
- Modeling language for CPS
- Model checking and testing methods for CPS
- Etc.

•The current number of students is small
•Feel free to contact me (dsksh@jaist.ac.jp) and visit the lab!

2

物理情報系 / Cyber-physical systems (CPS)
•Computer systems that is tightly integrated with physical
environment
- Input: sensors; Output: actuators
- Hybrid system of discrete and continuous behaviors
- Example: automobiles, airplanes, robots, houses, medical
devices, power plants, etc.

•Inter-disciplinary area
- Programming languages, software engineering, numerical
simulation, control theory, optimization, etc.

3Image courtesy of NSF.

Modeling CPS
•Describe two components
- Physical system (plant): Continuous system

✴ E.g. mathematical equations
- Cyber system (controller): Discrete system

✴ E.g. state transition systems

•CPS modeling languages
- Provide syntax for describing both continuous and discrete
behaviors
- Example

✴MATLAB/Simulink/Stateflow (graphical)
✴ HydLa [Ueda, Ishii+], Acumen [Taha+], Lustre [Caspi+] (textual) 4

x'(t) = u(t) cos θ(t)

y'(t) = u(t) sin θ(t)

θ'(t) = w(t)

right straight

stop left

5

Example CPS model
•Line tracer

https://automaticaddison.com/how-to-make-a-
line-following-robot-using-raspberry-pi/

[Lee&Seshia, 2017]

Example CPS model (line tracer)
•Model described with Simulink/Stateflow

6

モデル検査の対象 / Model checking target
•We aim at the verification of CPS models

7

Requirement
analysis

Conceptual
modeling

Detailed
modeling

Testing w/
simulation

Model checking

Hardware
implementation

Simulation w/
hardware

System
integration

System V&V

Overview
•Issues in the modeling/simulation/verification of
cyber-physical systems (CPS)
- Autonomy and scaling (in size and complexity) of systems
- Approximations made in modeling (abstraction) and simulation
(numerical errors)
- Computational difficulty in verification
- etc.

•Objective: Enable to model CPS appropriately and to
verify their useful properties

8

(Discrete-time) Simulink models
•Diagrams describing computation on signals

9

○
○

○
○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
○

○
○

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■

s

o

i

5 10 15
0
2
4
6
8

1, 1, 1, ... 1, 1.9, 2.71, ...

In1

Out1

158 D. Ishii et al.

1

In1 1

Out1Saturate

Gain

Add

Delay

(a) Model S1: An integrator.

Subsystem1

1

In1

1

Out1

1 1 > 5

Switch

Const1

Const2

(b) Model S2: A switch after S1.

1 1

Subsystem1

1

One

1

In1

1

Out1
x10 x1

~= 0

IsTrue

> 2

Compare2
1

Out1

En

(c) Model S3: An example with multiple rates and an enabled subsystem.

1

In1

Bus Creator
Constant

1

Out1

e1

e2

(d) Model S4: Bus signal.

Out1 (o)

In1 (i)
0 Step (j)

0
1

(e) Example of executing S1.

Fig. 1. Example Simulink models.

Example Simulink models are shown in Fig. 1. Model S1 describes an inte-
gration with a feedback loop, in which the input value is added with the output
value of the previous step with gain 0.9; here, blocks of type Add, Constant,
Gain and Unit Delay are utilized; also, block Saturate is used to limit the
input range to [−1, 1]. Each block is configured with its parameters such as gain
factor, saturation threshold, and data type of the signal to be processed. Model
S2 embeds S1 as a subsystem to model in a hierarchical way. S2 describes a
branch using a Switch block that outputs a constant signal with a value of 1 or
2, depending on whether the input is greater than 5 or not. Model S3 is a more
complex example with rate transition and a subsystem with an Enable port.
Initially, the subsystem One is deactivated (outputs 0); it will be activated when
Compare2 outputs true, but the activation occurs at a 10-fold period. Model S4

exemplifies matrix and bus signals. It outputs a signal that combines two named
elements, a scalar signal e1 and a matrix signal e2.

The primary function of Simulink is numerical simulation, i.e. to obtain out-
put signals of models. In this paper, we regard a signal as a bounded sequence
of output values; j-th value is output at time j× st (j ≥ 0 and st is a configured
sample time). Example input and output signals are shown in Fig. 1e.

Simulink models have a tree structure consisting of subsystems as shown in
Fig. 1. Accordingly, each block in models can be located by a path i.e. a sequence
of subsystem names ending with a block name; e.g., “S2/Subsystem1/Saturate”

Safety properties
•Properties stating that "something bad never
happens"
- Example: "always "

- Example: "when ,
"

Out < 10

Out = 2

Freq(In) > 1000[Hz]

10

○
○

○
○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
○

○
○

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■

s

o

i

5 10 15
0
2
4
6
8

Out < 10

Simulink encoding example
•Description of a model content and a property in a logic
formula (SMT-LIB)

11

158 D. Ishii et al.

1

In1 1

Out1Saturate

Gain

Add

Delay

(a) Model S1: An integrator.

Subsystem1

1

In1

1

Out1

1 1 > 5

Switch

Const1

Const2

(b) Model S2: A switch after S1.

1 1

Subsystem1

1

One

1

In1

1

Out1
x10 x1

~= 0

IsTrue

> 2

Compare2
1

Out1

En

(c) Model S3: An example with multiple rates and an enabled subsystem.

1

In1

Bus Creator
Constant

1

Out1

e1

e2

(d) Model S4: Bus signal.

Out1 (o)

In1 (i)
0 Step (j)

0
1

(e) Example of executing S1.

Fig. 1. Example Simulink models.

Example Simulink models are shown in Fig. 1. Model S1 describes an inte-
gration with a feedback loop, in which the input value is added with the output
value of the previous step with gain 0.9; here, blocks of type Add, Constant,
Gain and Unit Delay are utilized; also, block Saturate is used to limit the
input range to [−1, 1]. Each block is configured with its parameters such as gain
factor, saturation threshold, and data type of the signal to be processed. Model
S2 embeds S1 as a subsystem to model in a hierarchical way. S2 describes a
branch using a Switch block that outputs a constant signal with a value of 1 or
2, depending on whether the input is greater than 5 or not. Model S3 is a more
complex example with rate transition and a subsystem with an Enable port.
Initially, the subsystem One is deactivated (outputs 0); it will be activated when
Compare2 outputs true, but the activation occurs at a 10-fold period. Model S4

exemplifies matrix and bus signals. It outputs a signal that combines two named
elements, a scalar signal e1 and a matrix signal e2.

The primary function of Simulink is numerical simulation, i.e. to obtain out-
put signals of models. In this paper, we regard a signal as a bounded sequence
of output values; j-th value is output at time j× st (j ≥ 0 and st is a configured
sample time). Example input and output signals are shown in Fig. 1e.

Simulink models have a tree structure consisting of subsystems as shown in
Fig. 1. Accordingly, each block in models can be located by a path i.e. a sequence
of subsystem names ending with a block name; e.g., “S2/Subsystem1/Saturate”

(define-fun init ((s@0 Real)) Bool
 (= s@0 0)
)
(define-fun trans ((c Int)
 (s@0 Real) (s@1 Real) (a Real) (o Real))
 Bool
 (let ((lv (saturate 1 (- 1) i)))
 (and (= o (+ lv (* 0.9 s@0)))
 (= s@1 o))

 ;; Invariant instrumentation.
 (<= o 10)
))
...

o ≤ 10

I(s0) ⟺ s0 = 0

 T(s, s′ , i, o) ⟺ ∃lv, . . .
∧ o = lv + 0.9s0 ∧ s1 = o

Silver bullet: SMT solvers
•Tool for checking satisfiability modulo theories
- Input: predicate logic formulas
- Based on efficient search algorithms
- E.g. Z3, https://github.com/Z3Prover/z3
- E.g. CVC5, https://cvc5.github.io/

• Example theories
- Integer/real arithmetic
- Equality and functions
- Bit vectors
- Differential equations

12

x = 2y + 1 ∧ (x > y ⇒ z = y / x)
x, y: integer variables
z: real variables
Solution: Satisfiable
x = 3, y = 1, z = 0.333...

https://github.com/Z3Prover/z3
https://cvc5.github.io/

Example: SMT-based model checking of
Simulink models

13
https://www.gaio.co.jp/products/prompt-2/

CPS model Logic formula Solving result Verification
result

Encoding
SMT
solving Decoding

D. Ishii, T. Tomita, T. Aoki, T.Q. Ngô, T.B.N. Do, H. Takai:
SMT-Based Model Checking of Industrial Simulink Models,
ICFEM, LNCS 13478, pp. 156-172, 2022.

160 D. Ishii et al.

Begin

Generate block
table

Generate
subsystem table

Slicing /
Rate separation

For each subsystem/block b in the IR

b

Encode
exactly ?

Approx.
printer

Exact
printer

Prove
invariance

?

BMC
K-

induction

End

Encoder
(for system definition) Model checker

Simulink model,
invariance, and
other parameters

Invariance proof or
a counterexample

No

Yes
Yes

No

IR
generation

Printing

Fig. 2. The process of SMT-based model checking.

where s! ∈ D(Vs), i! ∈ D(Vi), o! ∈ D(Vo), I(s−1), and T (sj−1, sj , ij , oj)
holds for j ∈ [0, k − 1]. Input, output and state signals are the traces i0 · · · ik−1,
o0 · · · ok−1, and s−1 · · · sk−1 of an execution path.

The input and output signal values at the initial time are represented by i0 and
o0. Signals can be depicted as in Fig. 1e.

The formalization in this paper may not be applicable to some discrete-time
Simulink models, e.g. signal delays for variable lengths. In addition to the above
signal data types, there are types for fixed-point numbers, strings, enumeration
values, and user-defined ValueType objects. Support for general models and
types is a future work.

3 SMT-Based Model Checking

SMT (satisfiability modulo theories) solvers are automated provers for the satis-
fiability of logic formulas that involve predicates in various theories e.g. integer,
real and FP arithmetic. In this paper, we apply a representative implementation
Z3 2 to the analysis of Simulink models.

We assume an invariance property of a Simulink model and verify that it
holds for the model or violated in an execution. Typically, such properties can
represent a test objective; a counterexample corresponds to a test case and a
valid invariance indicates a dead logic.

Definition 3. Given a model (I, T), an invariance is described by a formula
!φ, where φ ⊆ D(Vi)×D(Vs) is a predicate on the input and state variables.
Assume an execution path involving input signal i0 · · · ik−1 and state signals
s−1 · · · sk−1. Then, it is a counterexample if ¬φ(ij , sj−1) holds for a j ∈ [0, k−1].
Invariance !φ holds for a model iff there is no counterexample of any length.

2 https://github.com/Z3Prover/z3.

https://www.gaio.co.jp/products/prompt-2/

Model checking applications
•Model-based testing
- Use models as a test oracle

•Test generation
- Boundary test objectives
- E.g. Search for an input signal that can enable a Switch block

•Coverage testing
- Check whether every block is activated at lease once in a test execution

•Safety verification
- Instrument a failure detection circuit and check whether it is activated

14

Example Studying Schedule at JAIST
•1st year: Focus on the lectures
•2nd year: Mainly work on the research at the lab

15

Lectures

Research

Reviews

Conference

Thesis writing

M1 M2

Mid-term Defence

Submission to a workshop

Proposal Master's thesis

Survey Development Experiments

研究プロジェクト / Research project
•Application
development

•Development of an SMT-solver-based MC method

16

CPS model Logic
formula Satisfiability Proof of

dependability

Encoding
SMT
solving Decoding

Robot arm controller
Driver-assistance system

Example master's research (1)
•Compositional checking of models
- Issue: Scalability issue of the model
checking process
- Approach: Composition of the target and
module-wise processing

17

CPS module Logic
formula Solving result Verification

result

Encoding
SMT
solving

Decoding

CPS module Logic
formula Solving result Compositional

reasoning

… … …

Compositional
system

部品A | （□InA) ⇒ (□OutA)

部品A || 部品B || 外部環境 | 安全性

部品B | (□InB) ⇒ (□OutB)
=

=

=

Example master's research (1)
•Research items
- Survey

✴ On MC methods/tools (e.g. Kind2, SMT solvers)
✴ On compositional MC methods

- Theoretical development
✴ Design of a new MC method
✴ Proof of the correctness of the method

- Software implementation
✴ Extension of an existing tool

- Experiments
✴ Collect motivating examples
✴ Evaluation of the method

18

Example master's research (2)
•Test method for a robot arm
- Issue: Gap between the model and
the implementation in the robot
development
✴ E.g. gap w.r.t time and poses

- Approach:
Application of the model-based
testing (MBT) method

19

Example master's research (2)
•Research items
- Survey

✴ Robotics basics, ROS
✴ Model-based testing methods

- Theoretical development
✴ Modeling of kinematic and dynamical aspects of the target robot
✴ Design of a conformance checking method

- Software implementation
✴ Conformance checking module for the ROS framework (w/ Python)

- Experiments
✴ Case study on the robot/model conformance
✴ Evaluation of the proposed method

20

学生募集 / Call for new lab members
•現在の研究プロジェクト
/ Current projects

•その他のテーマでも / Or, other themes
- 例: 機械学習系の検証 / E.g. verification of ML systems

21

Robot arm controller
Driver-assistance system

CPS model Logic
formula Satisfiability Proof of

dependability

Encoding
SMT
solving Decoding

SMT-based model checking method

